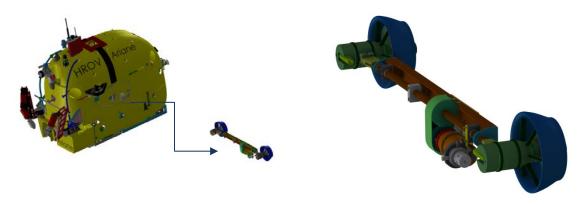

Comment assurer la propulsion d'un robot sous-marin ?

NOM	CLASSE
DDÉNOM	

ÉTUDE DES MOUVEMENTS ET DES DÉPLACEMENTS DU ROV* ARIANE

- 1. Combien de mouvements peuvent être effectués par le robot sous-marin?
- 2. Nombre de translations selon les axes (x,y,z)?
- 3. Nombre de rotations selon les axes (x,y,z)?
- 4. Comment appelle-t-on le mouvement de rotation autour de l'axe x?
- 5. Comment appelle-t-on le mouvement de rotation autour de l'axe y?
- 6. Comment appelle-t-on le mouvement de rotation autour de l'axe z?



SYSTÈME DE PROPULSION

- 7. Quelles solutions techniques permettent d'obtenir le déplacement et les mouvements du robot sous-marin ?
- 8. Citez les 2 éléments principaux qui composent chaque système de propulsion.
- 9. Vous désirez inspecter un puits vertical dans un canyon sous-marin, quels turbopropulseurs faut-il activer pour obtenir un mouvement de montée ou descente ?
- 10. Vous désirez filmer la face entière d'une falaise sous-marine, quels turbopropulseurs faut-il activer pour obtenir un déplacement latéral (à droite et à gauche) ?
- 11. Quels turbopropulseurs faut-il activer pour faire avancer et reculer l'engin?
- 12. Quelle est la particularité de ces deux propulseurs?

MODÉLISATION EN 3D

13. Sur le modèle 3D du HROV Ariane (eDrawings) fourni pour l'activité, isolez le système de propulsion principal comme ci-dessous.

14. En quelques lignes, expliquez quelle solution technique a été retenue par les ingénieurs pour permettre l'orientation des deux propulseurs.

*Remotely Operated Vehicle (ROV) « véhicule contrôlé à distance »